Variability in the Insect and Plant Adhesins, Mad1 and Mad2, within the Fungal Genus Metarhizium Suggest Plant Adaptation as an Evolutionary Force

نویسندگان

  • Michael Wyrebek
  • Michael J. Bidochka
چکیده

Several species of the insect pathogenic fungus Metarhizium are associated with certain plant types and genome analyses suggested a bifunctional lifestyle; as an insect pathogen and as a plant symbiont. Here we wanted to explore whether there was more variation in genes devoted to plant association (Mad2) or to insect association (Mad1) overall in the genus Metarhizium. Greater divergence within the genus Metarhizium in one of these genes may provide evidence for whether host insect or plant is a driving force in adaptation and evolution in the genus Metarhizium. We compared differences in variation in the insect adhesin gene, Mad1, which enables attachment to insect cuticle, and the plant adhesin gene, Mad2, which enables attachment to plants. Overall variation for the Mad1 promoter region (7.1%), Mad1 open reading frame (6.7%), and Mad2 open reading frame (7.4%) were similar, while it was higher in the Mad2 promoter region (9.9%). Analysis of the transcriptional elements within the Mad2 promoter region revealed variable STRE, PDS, degenerative TATA box, and TATA box-like regions, while this level of variation was not found for Mad1. Sequences were also phylogenetically compared to EF-1α, which is used for species identification, in 14 isolates representing 7 different species in the genus Metarhizium. Phylogenetic analysis demonstrated that the Mad2 phylogeny is more congruent with 5' EF-1α than Mad1. This would suggest that Mad2 has diverged among Metarhizium lineages, contributing to clade- and species-specific variation, while it appears that Mad1 has been largely conserved. While other abiotic and biotic factors cannot be excluded in contributing to divergence, these results suggest that plant relationships, rather than insect host, have been a major driving factor in the divergence of the genus Metarhizium.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The MAD1 adhesin of Metarhizium anisopliae links adhesion with blastospore production and virulence to insects, and the MAD2 adhesin enables attachment to plants.

Metarhizium anisopliae is a fungus of considerable metabolic and ecological versatility, being a potent insect pathogen that can also colonize plant roots. The mechanistic details of these interactions are unresolved. We provide evidence that M. anisopliae adheres to insects and plants using two different proteins, MAD1 and MAD2, that are differentially induced in insect hemolymph and plant roo...

متن کامل

Metarhizium anisopliae Pathogenesis of Mosquito Larvae: A Verdict of Accidental Death

Metarhizium anisopliae, a fungal pathogen of terrestrial arthropods, kills the aquatic larvae of Aedes aegypti, the vector of dengue and yellow fever. The fungus kills without adhering to the host cuticle. Ingested conidia also fail to germinate and are expelled in fecal pellets. This study investigates the mechanism by which this fungus adapted to terrestrial hosts kills aquatic mosquito larva...

متن کامل

The rhizosphere-competent entomopathogen Metarhizium anisopliae expresses a specific subset of genes in plant root exudate.

Metarhizium anisopliae and Beauveria bassiana are ubiquitous insect pathogens and possible plant symbionts, as some strains are endophytic or colonize the rhizosphere. We evaluated 11 strains of M. anisopliae and B. bassiana, and two soil saprophytes (the non-rhizospheric Aspergillus niger and the rhizosphere-competent Trichoderma harzianum) for their ability to germinate in bean root exudates ...

متن کامل

Carbon translocation from a plant to an insect-pathogenic endophytic fungus

Metarhizium robertsii is a common soil fungus that occupies a specialized ecological niche as an endophyte and an insect pathogen. Previously, we showed that the endophytic capability and insect pathogenicity of Metarhizium are coupled to provide an active method of insect-derived nitrogen transfer to a host plant via fungal mycelia. We speculated that in exchange for this insect-derived nitrog...

متن کامل

Metabolic Conservation and Diversification of Metarhizium Species Correlate with Fungal Host-Specificity

The ascomycete genus Metarhizium contains several species of insect pathogenic fungi ranging from specialists with narrow host ranges to generalists that can infect diverse invertebrates. Genetic and metabolic conservations and diversifications of Metarhizium species are not well understood. In this study, using the genome information of seven Metarhizium species, we performed a comparative ana...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013